以“智聯(lián)世界、元生無界”為主題的2022 世界人工智能大會(WAIC)于9月3日在上海圓滿落幕。WAIC作為全球人工智能的“科技風(fēng)向標、應(yīng)用展示臺、產(chǎn)業(yè)加速器、治理議事廳”,是全球人工智能領(lǐng)域最具影響力的行業(yè)盛會。
「WAIC 2022 · AI 開發(fā)者日」作為WAIC大會最重要的技術(shù)論壇之一,以“AI開發(fā)者所真正關(guān)注的”為主題,匯聚了2021 年圖靈獎得主、中外院士、世界級技術(shù)專家與科技企業(yè)創(chuàng)始人等 15 位學(xué)術(shù)界和產(chǎn)業(yè)界重磅嘉賓。九章云極DataCanvas公司開源技術(shù)副總裁、D-Lab主任楊健受邀出席論壇,并圍繞如何運用完整的、綜合性、端到端因果學(xué)習(xí)工具包解決“因果發(fā)現(xiàn)、因果量識別、因果效應(yīng)估計、反事實推斷和策略學(xué)習(xí)”五大關(guān)鍵問題,發(fā)表了《YLearn:因果學(xué)習(xí),從預(yù)測到?jīng)Q策》的精彩主題演講。
因果學(xué)習(xí):人工智能發(fā)展的技術(shù)突破口
隨著機器學(xué)習(xí)和深度學(xué)習(xí)在發(fā)展過程中遇到技術(shù)瓶頸,人工智能發(fā)展速度逐漸放緩,究其原因,一方面是機器學(xué)習(xí)存在著泛化能力較弱、解釋性不強、決策支持能力不足的關(guān)鍵性問題;另一方面政府和企業(yè)提出“智能決策”的需求,即以數(shù)據(jù)驅(qū)動的方式實現(xiàn)自動化決策來提高整體運營效率。
隨著機器學(xué)習(xí)建模越來越多的應(yīng)用,人工智能技術(shù)從預(yù)測性分析向指導(dǎo)性分析升級轉(zhuǎn)移,自動化“決策”成為政府和企業(yè)在數(shù)智化時代的核心需求,決策者需要一個可理解的AI決策邏輯以及具有可信度、可解釋的決策結(jié)果。而當(dāng)前機器學(xué)習(xí)主要是完成預(yù)測性任務(wù),難以滿足政府和企業(yè)自動化決策的需求。
Gartner發(fā)布的《2022年新興技術(shù)成熟度曲線》中提到,因果人工智能是加速AI自動化的關(guān)鍵技術(shù)之一。因果學(xué)習(xí)成為補充機器學(xué)習(xí)問題的關(guān)鍵技術(shù),人工智能發(fā)展極具潛力的技術(shù)突破口,引發(fā)業(yè)界的廣泛關(guān)注和熱點研究。
YLearn:因果學(xué)習(xí),從預(yù)測到?jīng)Q策
2019年圖靈獎得主Yoshua Bengio先生曾提到,“因果關(guān)系對于機器學(xué)習(xí)的下一步進展非常重要”。從2019年開始,因果學(xué)習(xí)的學(xué)術(shù)研究新成果不斷出現(xiàn),發(fā)表的相關(guān)論文數(shù)量每年都在翻倍增長。目前,從國內(nèi)外關(guān)于因果學(xué)習(xí)的研發(fā)來看,出現(xiàn)了很多因果學(xué)習(xí)的工具,例如DoWhy、圍繞解決因果效應(yīng)評估類問題的EconML,用來完成uplift建模的CausalML以及專注解決因果發(fā)現(xiàn)問題的Causal Learn。但這些工具都只能解決因果學(xué)習(xí)中的部分問題,又因為不同的工具所依賴的理論框架和結(jié)構(gòu)體系不同,導(dǎo)致工具包之間也難以融合使用。因果學(xué)習(xí)領(lǐng)域則是缺少系統(tǒng)、完整的、綜合性、端到端的工具包。
九章云極DataCanvas公司自主研發(fā)的一站式處理因果學(xué)習(xí)完整流程的開源算法工具包YLearn,是目前首款端到端、較完整、較系統(tǒng)的因果學(xué)習(xí)算法工具包,率先解決了因果學(xué)習(xí)中“因果發(fā)現(xiàn)、因果量識別、因果效應(yīng)估計、反事實推斷和策略學(xué)習(xí)”五大關(guān)鍵問題,降低“決策者”使用門檻,不斷滿足政府和企業(yè)自動化“決策”的需求。
GitHub 地址:https://github.com/DataCanvasIO/YLearn
YLearn由CausalDiscovery、CausalModel、EstimatorModel、Policy、Interpreter、Whatif等部件組成,各部件支持獨立使用,也支持統(tǒng)一封裝。為幫助用戶更直觀地理解數(shù)據(jù)、調(diào)整策略,YLearn提供了因果圖、因果效應(yīng)解釋、決策樹等重要模塊的可視化輸出。
與國內(nèi)外因果學(xué)習(xí)工具相比,九章云極DataCanvas公司的YLearn具有一站式、新而全、用途廣的特點。
結(jié)合政府和企業(yè)在決策任務(wù)上的需求,YLearn將與九章云極DataCanvas公司的自動機器學(xué)習(xí)平臺相結(jié)合,通過與AutoML技術(shù)的融合,提高機器學(xué)習(xí)的魯棒性、泛化能力和解釋性,實現(xiàn)因果學(xué)習(xí)的自動調(diào)參和優(yōu)化,進一步降低使用門檻。同時,YLearn解決了市場上缺失功能強大且完整的因果學(xué)習(xí)工具包這一“卡脖子”難題,將技術(shù)回歸業(yè)務(wù),支持決策類業(yè)務(wù)場景,為客戶提供多種決策方案。
因果學(xué)習(xí)助力人工智能邁向新階段
人工智能技術(shù)作為新一輪科技革命和產(chǎn)業(yè)變革的核心力量,正處于從預(yù)測邁向決策的新發(fā)展階段。因果學(xué)習(xí)在這一階段發(fā)揮著重要作用,彌補機器學(xué)習(xí)的理論缺陷,逐步解決從“是什么”到“為什么”的問題,從政府和企業(yè)的需求出發(fā),提升“AI決策”的可信度和可用度,將AI能力更進一步交為業(yè)務(wù)所用。
為了更好的帶動國內(nèi)因果學(xué)習(xí)領(lǐng)域的發(fā)展,推動因果學(xué)習(xí)的多元化發(fā)展,九章云極DataCanvas公司聯(lián)合世界人工智能大會組委會辦公室、機器之心、上海市人工智能行業(yè)協(xié)會、天池共同舉辦黑客松「因果學(xué)習(xí)和決策優(yōu)化挑戰(zhàn)賽」,為全球各路開發(fā)者精英們提供同臺競技的平臺。挑戰(zhàn)賽以“如何優(yōu)化干預(yù)方案能使因果效應(yīng)最大”為主題,將因果學(xué)習(xí)中的普適性問題具化,旨在考察選手使用因果推斷在決策方案制定問題上的估計能力。
作為業(yè)界首個面向「因果推斷全流程」的賽事,收到來自全國各地包括運用人工智能相關(guān)技術(shù)賦能數(shù)智化升級的企業(yè)、結(jié)合人工智能技術(shù)進行創(chuàng)新探索的科研單位、高等院校的團隊及專業(yè)開發(fā)者等近四千支隊伍報名參賽。參賽隊伍經(jīng)過23天的同臺競技,不斷探索因果學(xué)習(xí)領(lǐng)域的技術(shù)高峰,刷新成績紀錄,角逐出TOP18具有雄厚的AI技術(shù)實力以及富有創(chuàng)造力的優(yōu)勝隊伍。
未來,九章云極DataCanvas公司將不斷創(chuàng)新研發(fā)開源工具,將政府和企業(yè)的業(yè)務(wù)需求與技術(shù)實踐相結(jié)合,助力政府和企業(yè)數(shù)智化升級,推動人工智能向新階段。
好文章,需要你的鼓勵
騰訊ARC實驗室推出AudioStory系統(tǒng),首次實現(xiàn)AI根據(jù)復(fù)雜指令創(chuàng)作完整長篇音頻故事。該系統(tǒng)結(jié)合大語言模型的敘事推理能力與音頻生成技術(shù),通過交錯式推理生成、解耦橋接機制和漸進式訓(xùn)練,能夠?qū)?fù)雜指令分解為連續(xù)音頻場景并保持整體連貫性。在AudioStory-10K基準測試中表現(xiàn)優(yōu)異,為AI音頻創(chuàng)作開辟新方向。
Meta與特拉維夫大學(xué)聯(lián)合研發(fā)的VideoJAM技術(shù),通過讓AI同時學(xué)習(xí)外觀和運動信息,顯著解決了當(dāng)前視頻生成模型中動作不連貫、違反物理定律的核心問題。該技術(shù)僅需添加兩個線性層就能大幅提升運動質(zhì)量,在多項測試中超越包括Sora在內(nèi)的商業(yè)模型,為AI視頻生成的實用化應(yīng)用奠定了重要基礎(chǔ)。
上海AI實驗室發(fā)布OmniAlign-V研究,首次系統(tǒng)性解決多模態(tài)大語言模型人性化對話問題。該研究創(chuàng)建了包含20萬高質(zhì)量樣本的訓(xùn)練數(shù)據(jù)集和MM-AlignBench評測基準,通過創(chuàng)新的數(shù)據(jù)生成和質(zhì)量管控方法,讓AI在保持技術(shù)能力的同時顯著提升人性化交互水平,為AI價值觀對齊提供了可行技術(shù)路徑。
谷歌DeepMind團隊開發(fā)的GraphCast是一個革命性的AI天氣預(yù)測模型,能夠在不到一分鐘內(nèi)完成10天全球天氣預(yù)報,準確性超越傳統(tǒng)方法90%的指標。該模型采用圖神經(jīng)網(wǎng)絡(luò)技術(shù),通過學(xué)習(xí)40年歷史數(shù)據(jù)掌握天氣變化規(guī)律,在極端天氣預(yù)測方面表現(xiàn)卓越,能耗僅為傳統(tǒng)方法的千分之一,為氣象學(xué)領(lǐng)域帶來了效率和精度的雙重突破。