從傳統(tǒng)角度看,電力電場(chǎng)的發(fā)電能力普遍較弱,因?yàn)槲覀冎两窈茈y預(yù)測(cè)無形無相的風(fēng),會(huì)在新一天中表現(xiàn)出怎樣的活動(dòng)趨勢(shì)。
谷歌公司能源市場(chǎng)策略主管Michael Terrell表示,“電力市場(chǎng)的主流運(yùn)作方式,要求提前一天安排資產(chǎn)的運(yùn)轉(zhuǎn)規(guī)劃。只有這樣,運(yùn)營商才能在市場(chǎng)上獲得理想的電力銷售價(jià)格。”
Terrel還問道,“但對(duì)于不知何時(shí)吹來的風(fēng),我們要如何提前一天完成規(guī)劃?又要怎樣提前根據(jù)風(fēng)向調(diào)整發(fā)電機(jī)的迎風(fēng)角度?”
對(duì)這個(gè)看似無解的問題,谷歌有著自己的答案。
谷歌旗下人工智能企業(yè)DeepMind,正著手將天氣數(shù)據(jù)與美國中部高達(dá)700兆瓦的風(fēng)力發(fā)電數(shù)據(jù)結(jié)合起來,通過機(jī)器學(xué)習(xí),以更好地預(yù)測(cè)風(fēng)力發(fā)電效率、電力供應(yīng)總量,并借此降低運(yùn)營成本。
在上周于斯坦福大學(xué)普雷考特能源研究所舉辦的研討會(huì)上,Terrell表示:“我們一直在與DeepMind團(tuán)隊(duì)合作,使用機(jī)器學(xué)習(xí)技術(shù),獲取公開天氣數(shù)據(jù),并據(jù)此預(yù)測(cè)第二天的風(fēng)力發(fā)電總量。”
令人振奮的是,Terrell稱預(yù)測(cè)方案將風(fēng)電場(chǎng)的收入提升達(dá)20%。
美國能源部在其2015年《Wind Vision》報(bào)告中,將“改善風(fēng)能預(yù)報(bào)”列為首要任務(wù),其中特別強(qiáng)調(diào)了提升風(fēng)能可靠性的要求。報(bào)告提到,“收集數(shù)據(jù)并開發(fā)模型,借此改善多個(gè)時(shí)間尺度(例如分、時(shí)、天、月、年等)的風(fēng)能預(yù)報(bào)能力。”
谷歌的目標(biāo)則更加廣泛——徹底消除自身基礎(chǔ)設(shè)施運(yùn)營中的碳排放量,將高達(dá)兩倍于舊金山全城的電力消耗,徹底轉(zhuǎn)化為純綠色能源。
Terrell提到,通過將年度電力使用總量與年度可再生能源采購量匹配起來,谷歌已經(jīng)取得了階段性的里程碑。但目前,谷歌方面還無法在各處基礎(chǔ)設(shè)施實(shí)現(xiàn)以小時(shí)為單位的零碳排放目標(biāo)。而這也將成為谷歌公司下一階段的工作重點(diǎn)——Terrell將其稱為“24/7全天候無碳”目標(biāo)。
“我們正朝著這個(gè)方向努力,也深刻意識(shí)到其中的嚴(yán)峻挑戰(zhàn)。可以說,面對(duì)當(dāng)下可再生能源,還談不上任何成本效益的現(xiàn)狀,實(shí)現(xiàn)零碳排放的難度無異于登月。”
來自倫敦DeepMind的科學(xué)家們則證明,人工智能有望改善谷歌乃至整個(gè)可再生能源市場(chǎng)的運(yùn)營成本及市場(chǎng)生存能力,借此為環(huán)保事業(yè)添磚加瓦。
DeepMind公司項(xiàng)目經(jīng)理Sims Witherspoon與谷歌軟件工程師Carl Elkin表示,“我們希望使用機(jī)器學(xué)習(xí)方法,增強(qiáng)風(fēng)力發(fā)電的商業(yè)化能力,推動(dòng)無碳能源在全球電網(wǎng)中的進(jìn)一步普及。”在DeepMind的官方博文中,他們概念了如何為西南發(fā)電站區(qū)(由加拿大邊境一路延伸至得克薩斯州北部)中的谷歌風(fēng)力發(fā)電場(chǎng)增加利潤:
“我們的神經(jīng)網(wǎng)絡(luò),利用天氣預(yù)報(bào)與風(fēng)電機(jī)歷史數(shù)據(jù)進(jìn)行訓(xùn)練,由此建立起的DeepMind系統(tǒng),能夠在實(shí)際發(fā)電之前36個(gè)小時(shí)預(yù)測(cè)風(fēng)力發(fā)電總量。以這些預(yù)測(cè)結(jié)論為基礎(chǔ),我們的模型能夠提前為風(fēng)電網(wǎng)的全天及每小時(shí)發(fā)電量做出預(yù)判。”
DeepMind系統(tǒng)能夠提前36個(gè)小時(shí)預(yù)測(cè)風(fēng)力發(fā)電量,幫助發(fā)電運(yùn)營商以更高的利潤比例為整體電網(wǎng)供電。
好文章,需要你的鼓勵(lì)
騰訊ARC實(shí)驗(yàn)室推出AudioStory系統(tǒng),首次實(shí)現(xiàn)AI根據(jù)復(fù)雜指令創(chuàng)作完整長篇音頻故事。該系統(tǒng)結(jié)合大語言模型的敘事推理能力與音頻生成技術(shù),通過交錯(cuò)式推理生成、解耦橋接機(jī)制和漸進(jìn)式訓(xùn)練,能夠?qū)?fù)雜指令分解為連續(xù)音頻場(chǎng)景并保持整體連貫性。在AudioStory-10K基準(zhǔn)測(cè)試中表現(xiàn)優(yōu)異,為AI音頻創(chuàng)作開辟新方向。
Meta與特拉維夫大學(xué)聯(lián)合研發(fā)的VideoJAM技術(shù),通過讓AI同時(shí)學(xué)習(xí)外觀和運(yùn)動(dòng)信息,顯著解決了當(dāng)前視頻生成模型中動(dòng)作不連貫、違反物理定律的核心問題。該技術(shù)僅需添加兩個(gè)線性層就能大幅提升運(yùn)動(dòng)質(zhì)量,在多項(xiàng)測(cè)試中超越包括Sora在內(nèi)的商業(yè)模型,為AI視頻生成的實(shí)用化應(yīng)用奠定了重要基礎(chǔ)。
上海AI實(shí)驗(yàn)室發(fā)布OmniAlign-V研究,首次系統(tǒng)性解決多模態(tài)大語言模型人性化對(duì)話問題。該研究創(chuàng)建了包含20萬高質(zhì)量樣本的訓(xùn)練數(shù)據(jù)集和MM-AlignBench評(píng)測(cè)基準(zhǔn),通過創(chuàng)新的數(shù)據(jù)生成和質(zhì)量管控方法,讓AI在保持技術(shù)能力的同時(shí)顯著提升人性化交互水平,為AI價(jià)值觀對(duì)齊提供了可行技術(shù)路徑。
谷歌DeepMind團(tuán)隊(duì)開發(fā)的GraphCast是一個(gè)革命性的AI天氣預(yù)測(cè)模型,能夠在不到一分鐘內(nèi)完成10天全球天氣預(yù)報(bào),準(zhǔn)確性超越傳統(tǒng)方法90%的指標(biāo)。該模型采用圖神經(jīng)網(wǎng)絡(luò)技術(shù),通過學(xué)習(xí)40年歷史數(shù)據(jù)掌握天氣變化規(guī)律,在極端天氣預(yù)測(cè)方面表現(xiàn)卓越,能耗僅為傳統(tǒng)方法的千分之一,為氣象學(xué)領(lǐng)域帶來了效率和精度的雙重突破。